Robust unsupervised discriminative dependency parsing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Neural Dependency Parsing

Unsupervised dependency parsing aims to learn a dependency grammar from text annotated with only POS tags. Various features and inductive biases are often used to incorporate prior knowledge into learning. One useful type of prior information is that there exist correlations between the parameters of grammar rules involving different POS tags. Previous work employed manually designed features o...

متن کامل

Advances in discriminative dependency parsing

Achieving a greater understanding of natural language syntax and parsing is a critical step in producing useful natural language processing systems. In this thesis, we focus on the formalism of dependency grammar as it allows one to model important headmodifier relationships with a minimum of extraneous structure. Recent research in dependency parsing has highlighted the discriminative structur...

متن کامل

CMU: Arc-Factored, Discriminative Semantic Dependency Parsing

We present an arc-factored statistical model for semantic dependency parsing, as defined by the SemEval 2014 Shared Task 8 on Broad-Coverage Semantic Dependency Parsing. Our entry in the open track placed second in the competition.

متن کامل

Discriminative Classifiers for Deterministic Dependency Parsing

Deterministic parsing guided by treebankinduced classifiers has emerged as a simple and efficient alternative to more complex models for data-driven parsing. We present a systematic comparison of memory-based learning (MBL) and support vector machines (SVM) for inducing classifiers for deterministic dependency parsing, using data from Chinese, English and Swedish, together with a variety of dif...

متن کامل

Parsing With Dependency Relations And Robust Parsing

After a short recall of our view of dependency grammars, we present two dependency parsers. The first uses dependency relations to have a more concise expression of dependency rules and to get efficiency in parsing. The second uses typed feature structures to add some semantic knowledge on dependency trees and parses in a more robust left to right manner.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsinghua Science and Technology

سال: 2020

ISSN: 1007-0214

DOI: 10.26599/tst.2018.9010145